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The risk of extreme events due to weather and climate change, such as winds of unprecedented magnitude, is
predicted to increase throughout this century. Artificial ecosystems, such as coniferous plantation forests, can suf-
fer irreversible deterioration due to even a slight change in environmental conditions. However, few studies have
examined the effects of converting natural forests to plantations on their vulnerability to catastrophic winds. By
modelling the 2004 windthrow event of Typhoon Songda in northern Japan using the random forest machine
learning method, we answered two questions: do Abies plantation forests and natural mixed forests differ in their
vulnerability to strong winds and how do winds, topography and forest structure affect their vulnerability. Our
results show that Abies plantation forests are more vulnerable to catastrophic wind than natural mixed forests
under most conditions. However, the windthrow process was common to both types of forests, and the behaviour
of wind inside the forests may determine the windthrow probability. Future management options for adapting to
climate change were proposed based on these findings, including modifications of plantation forest structure to
reduce windthrow risk and reconversion of plantations to natural forests.

Introduction
The risk of disasters caused by extreme weather and climate
events is increasing. The Intergovernmental Panel on Climate
Change (IPCC) projected that the risk of extreme events, such as
intense heat, heavy rain, typhoons and drought, will increase on
an unprecedented scale throughout this century, although there
are variations in projected intensity and certainty depending on
the region (IPCC, 2013).

Wind disturbance is a major natural event that is essential to sus-
taining the integrity of temperate forest ecosystems (Nakashizuka,
1989; Yamamoto, 1989; Schelhaas et al., 2003). For example,
various sizes of windthrow patches serve as available locations
for the recruitment of new seedlings (Ulanova, 2000) and diver-
sification of the age structure and species composition of forests
(Mitchell, 2013). However, catastrophic disturbances that occur
at a scale and severity beyond the ability of the forest to recover

will degrade forest ecosystems and in turn reduce resilience
against subsequent disturbance events (Munang et al., 2013).
Furthermore, simplified artificial ecosystems are often more vul-
nerable than natural ecosystems and thus may suffer from sub-
stantial deterioration due to small changes in environmental
conditions or mild disturbances (Elmqvist et al., 2003; Timpane-
Padgham et al., 2017). A plantation forest is an example of an
artificial ecosystem that is commonly converted from a primary
or natural forest (Brockerhoff et al., 2008). Globally, the area of
plantations created by seeding and planting has increased by
approximately 5 million ha annually from 2005 to 2010 (FAO,
2010). Thus, globally, forest ecosystems are likely to become
more vulnerable to storm damage.

Several studies suggest that the conversion to plantations
(Schelhaas et al., 2003) and silvicultural interventions (Albrecht
et al., 2012) have contributed to the spread of windthrow on a
regional scale. Reported factors that regulate the vulnerability
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of forests to strong winds are generally wind characteristics
(Nakajima et al., 2009), topography (Kramer et al., 2001) and
forest structure (Jalkanen and Mattila, 2000; Mitchell et al.,
2001). However, few studies have compared the vulnerability of
plantation forests relative to that of natural forests. In addition,
the mechanisms by which the above factors (i.e. wind, topog-
raphy and forest structure) affect vulnerability to catastrophic
winds in both types of forests remain unclear.

The windthrow disturbances that occur in plantation forests
result in broken and uprooted trees and cause direct economic
loss for forest managers (Nieuwenhuis and Fitzpatrick, 2002).
They are also known to have many socio-economic impacts
through the collapse of timber prices due to the massive influx
of windthrown timber to the market (Gardiner et al., 2010). If
we understand the impact of conversion to plantations and the
process of windthrow under current climate, we will be able to
contribute to efficient forest management in the future under
altered climate conditions.

In this research, we addressed the following two questions
by modelling the 2004 windthrow event of Typhoon Songda in
northern Japan in Abies plantation forests and natural mixed
forests: (1) do Abies plantation forests and natural mixed forests
have different vulnerabilities to catastrophic wind? and (2) how
do winds, topography and forest structure affect the vulnerabil-
ity to storms of Abies plantation forests and natural mixed
forests?

Based on our interpretation of the results, we propose several
management options to minimize catastrophic damage to
existing and future plantation forests under altered climate
conditions.

Materials and methods
Study area
On 8 September 2004, the 18th typhoon of the year (Typhoon Songda)
hit Hokkaido in northern Japan (annual mean temperature of 8.9°C and
annual mean precipitation of 1107mm in Sapporo, the prefectural cap-
ital), and it disturbed 36 956 ha of forested area (Forest Research
Institute in Hokkaido, 2004). We chose eight study sites affected by the
typhoon, including four plantation sites and four natural forest sites
(Figure 1 and Table 1). These sites were 450 ha or more of plantation or
natural forest, and the expectation was that each forest type would
show a unique windthrow pattern. The species planted in the plantation
sites was Abies sachalinensis (F. Schmidt) Mast., which is the major

species for silviculture in Hokkaido. In the natural forest sites, the domin-
ant species were A. sachalinensis, Tilia japonica (Miq.) Simonk. and
Quercus crispula Blume, which are typical species in natural mixed for-
ests in Hokkaido. We targeted forest compartments with steep slopes of
more than 15° on average to analyse the effect of exposure to wind in
mountainous regions. Our intention was to analyse the windthrow
mechanisms in mountainous regions with hilltops and valleys; therefore,
our study sites covered the entire range of slope angles.

Identification of windthrow patches
Windthrow patches were identified by comparing aerial photos before
(1998–2004) and after (2004–2009) Typhoon Songda using stereoscopy.
We also used urgent survey data collected by Hokkaido Prefecture in the
aftermath of the Songda typhoon to accurately identify the damaged
area. We defined windthrow patches as grid cells of 25m × 25m with
> 80 per cent canopy loss. Easy Stereo View (PHOTEC Co., Ltd) was used
for stereoscopy, and QGIS2.8.4 (QGIS Development Team, 2015) and
ArcMap10.0 (Esri) were used to create shapefiles of windthrow patches.

Preparing the dataset
Six meteorological, topographical and forest structural variables, i.e.
maximum wind speed (m s−1), topographic exposure index (TOPEX,
Miller et al. 1987), slope angle (˚), tree density (n ha−1), broad-leaved
tree density (n ha−1) and stand height (m), were selected and calculated
(Table 2 and Figure 2) to be tested for a relationship to wind disturbance.
These are crucial factors identified by previous studies (Kramer et al.,
2001; Mitchell et al., 2001; Nakajima et al., 2009) focused on windthrow
risk assessments.

The meteorological simulations for Typhoon Songda were conducted
by Ito et al. (2016) with the use of a regional meteorological model, the
Weather Research and Forecasting (WRF) model (Skamarock et al.
2008), which was dynamically downscaled for the three two-way nested
domains that covered the Japanese islands and surrounding areas in
9-km grid intervals, the Japanese main islands in 3-km grid intervals
and Hokkaido in 1-km grid intervals. Typhoon Songda is considered as a
worst-case scenario for wind disasters in Hokkaido (Takemi et al., 2016).
In the present study, the WRF model was used to simulate local-scale
strong winds due to Typhoon Songda by further downscaling from a
1-km grid domain to local-scale domains in 200-m grid intervals to
focus on the current study areas. We applied the two-way nesting tech-
nique between the parent (1 km) and child (200m) domains; hence, simu-
lations were conducted for the four domains from the 9-km grid domain
down to the 200-m grid domain. Then, the maximum wind speeds from
0300 UTC on 7 September to 0000 UTC on 9 September were obtained
from the time series of the surface wind speeds recorded for each grid cell
in the simulation domains.

The TOPEX and slope angle were calculated using a digital elevation
model with 10-m resolution (Geospatial Information Authority of Japan)
by QGIS2.8.4 (QGIS Development Team, 2015) and GRASS6.4 (GRASS
Development Team, 2012). The distance-limited TOPEX is the sum of the
elevation angles (above the horizon) or depression angles (below the
horizon) at specified intervals on straight lines of length that radiate out
from a certain point in eight directions. A positive TOPEX value indicates
a sheltered topography, a value of 0 indicates a flat plain, and a nega-
tive value indicates an exposed topography. In our study, we set the
straight line as 2000m and the interval as 100m based on Lanquaye-
Opoku and Mitchell (2005) and Mitchell et al. (2001).

Data that were first recorded in 2003, the density of all trees, the
density of broad-leaved trees only and stand height given per forest
compartment, i.e. management unit, were obtained from a forest inven-
tory, which has been updated annually since by the Hokkaido Forest
Management Bureau. For the sites without data, these variables were

Figure 1 Typhoon track (left) and study site locations (right). Hokkaido is
the area enclosed by a dotted line, which includes plantation forest sites
(□) and natural forest sites (■).
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estimated using the field survey data by the Forest Science Centre for
Northern Biosphere in Hokkaido University on representative samples of
forest identified by aerial photographs. Forests identified in the aerial
photographs were classified into six categories using e-Cognition
software (Trimble Inc.): dense, middle and sparse coniferous forest, and
dense, middle and sparse mixed forest. Data from a standard quadrat

from any forest category were universally applied to other areas in the
same category.

Polygons of windthrow areas and forest structures (density of all/
broad-leaved trees and stand heights), grid cells of topographic data
(TOPEX and slope angle) and maximum wind speeds were divided into
25m × 25m cells (Figure 2).

Table 1 Annual mean temperature, precipitation and soil type in each site (statistics from 1988 to 2010).

Forest type Study site Annual mean temperature (°C) Annual mean precipitation (mm) Soil type

Rantation forests P1 Ohmu 5.7 865 Brown forest soil
x Rantation P2 Bifuka 5.5 1143 Brown forest soil
O Plantation P3 Niseko 7.6 1203 Brown forest soil/andosol

P4 Hakodate 8.4 1448 Brown forest soil/andosol
Natural forests N1 Nakagawa 5.5 1225 Brown forest soil

N2 Abashiri 4.8 702 Brown forest soil
N3 Tsubetsu 5.9 790 Andosol
N4 Tokachi 3.7 1315 Andosol

Table 2 Properties of the study sites.

Study
site

Total
number
of grid
cells

Percentage of
grid cells of
windthrow (%)

WIND TOPEX Slope Density BL_Density Height

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max

P1 9058 2.8 28 14 44 64 −18 179 19 2 48 538 0 2240 46 0 700 11 4 22
P2 13 635 1.0 25 16 44 43 −29 140 17 1 46 531 60 2100 108 0 1000 11 4 21
P3 9742 10.4 34 22 48 75 −5 174 21 3 48 559 100 2450 69 0 850 10 3 21
P4 7218 5.5 36 22 53 79 −16 214 23 2 56 887 110 2880 10 0 600 10 4 21
N1 42 059 0.1 31 17 51 65 −47 203 21 0 54 244 0 323 0 0 1 20 0 22
N2 11 171 0.4 36 17 66 78 −69 276 22 1 58 1256 0 1732 675 0 1011 21 0 23
N3 67 953 1.0 23 10 43 63 −47 227 20 0 57 629 0 1800 300 0 1000 16 14 18
N4 39 667 2.1 29 11 67 89 −72 208 23 0 60 1681 0 6600 862 0 3800 13 0 17

WIND, maximum wind speed (m s−1); TOPEX, topographic exposure index; Slope, slope angle (°); Density, tree density (n ha−1); BL_density, broad-
leaved tree density (n ha−1); Height, stand height (m).

Figure 2 Preparing the dataset.
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Our datasets contained a total of 227 316 grid cells (43 409 in plan-
tation sites + 183 907 in natural mixed forest sites) measuring 25m ×
25m. In the Abies plantation sites, 1948 cells were defined as ‘wind-
throw’, and these were equivalent to 4.49 per cent of the total Abies
plantation cells. In the natural mixed forest sites, 1640 cells were
defined as ‘windthrow’, and they accounted for 0.89 per cent of the
total natural mixed forest cells (Table 2).

Statistical analysis

Modelling approaches for assessing windthrow risk

Various models accounting for windthrow risk have been developed to
facilitate forest management. The approaches are roughly divided into
two categories: mechanistic modelling and empirical modelling. Recent
progress in the development of mechanistic modelling has primarily
occurred in Europe and North America (e.g. Gardiner et al., 2008; Dupont
et al., 2015). The advantages of mechanistic modelling include being
able to perform universal evaluations without information on real wind-
damaged forests because such modelling is based on physical processes
(Kamimura et al., 2015; Mitchell and Ruel, 2015). Conversely, some dis-
advantages of mechanistic modelling have also been noted. For
example, it requires information on the material strength of each spe-
cies obtained by destructive testing and wind condition information
based on high-resolution simulations. Therefore, difficulties are observed
when targeting forests located in complex topographies, where local
simulations of wind conditions are difficult and natural mixed forests
present diverse structures and various tree species (Dupont et al., 2015).

On the other hand, empirical modelling, which has been widely used for
the assessment of windthrow risk, is a suitable approach to examining the
relative effects of various factors on windthrow (Bonnesoeur et al., 2013;
Kamimura et al., 2015). One of the major empirical models, logistic regres-
sion (e.g. Valinger and Fridman, 1997, 2011; Albrecht et al., 2012;
Hanewinkel et al., 2014), has been commonly used because it is effective in
analysing the factors that influence wind damage, and this modelling pro-
cess can be performed without choosing a target scale, from a single tree
level to a regional level. The weakness of the logistic regression model is,
however, that its ability to predict wind damage decreases when there is a
complicated non-linear pattern between the variables. The random forest
(RF; Breiman, 2001) machine learning method is a powerful tool for variable
selection, and it is particularly suited to handling prediction problems that
include non-linear relationships between predictor and response variables
and complex interactions between variables (Sandri and Zuccolotto, 2006;
Strobl et al., 2007). RF combines many classification trees to produce more
accurate classifications. The by-products of the RF calculations include
measures of variable importance and similarity among data points that
may be used for clustering, multidimensional scaling, graphical representa-
tion and missing value imputation (Cutler et al., 2007). This method permits
the development of a flexible model with high-dimensional interactions
among explanatory variables, non-linear responses and high prediction per-
formance without overfitting. Ecological applications of RF have shown its
effectiveness on habitat analysis (Garzón et al., 2006; Prasad et al., 2006)
and windthrow risk assessment (Seidl et al., 2011).

We used empirical modelling to pursue our objectives, i.e. identifying
the factors that cause wind damage in natural mixed forests with vari-
ous tree species and in Abies plantations in complex topographies where
precise wind conditions are hard to simulate. Then, we selected RF to
model the windthrow probability based on our dataset, which includes
many variables with possibly complex non-linear relationships.

Windthrow modelling by RF and model validation

We generated a subsample to avoid overfitting the model to large forest
compartments by applying the RF method to model windthrow

occurrence. First, we removed forest compartments with less than 30
grid cells. Next, we generated a subsample from the data and main-
tained a virtually identical windthrow ratio (number of windthrow cells/
total number of cells) in each forest compartment.

The subsequent windthrow model used the resultant subsample (n =
46 950 grid cells). The forest type (plantation or natural) and study sites
(as a nominal variable, n = 8) were incorporated into the model along
with six continuous variables (maximum wind speed, TOPEX, slope angle,
density of all trees, density of broad-leaved trees and tree height). The
plot matrix of the explanatory variables area is shown in Supplementary
Figure S1. As hyperparameters (i.e. parameters of model construction)
of RF, ntree (the number of decision trees to grow) was set to 500 and
mtry (the number of variables randomly sampled as candidates at each
split) was set to 3. The variable importance was evaluated as the mean
decrease in accuracy after permutations of each variable. The variables
with higher ‘mean decrease in accuracy’ values are more important for
the classification by RF. When implementing RF models and calculating
the importance of explanatory variables, variable selection is biased in
favour of explanatory variables, with more potential cutpoints (Strobl
et al., 2009). To avoid this variable selection bias, the cforest function in
the party package (Hothorn et al., 2006; Strobl et al., 2007, 2008) of R
was used in the RF model. We also represented partial dependence plots
(Friedman, 2001) for six continuous variables that showed the depend-
ence of the probability of occurrence on one predictor variable after
averaging out the effects of the other predictor variables in the model.
We depicted them for plantation and natural mixed forest separately as
the calculated result of the two-way marginal effect of windthrow pre-
diction by RF.

A 10-fold cross-validation was conducted, and several model per-
formance indices were calculated by the R cv.models package (Oguro,
2016). A threshold value of windthrow occurrence was determined with
the coords function in the R pROC package (Robin et al., 2011). This
threshold is based on Youden’s J statistics (sensitivity + specificity –1:
Youden, 1950) and divides windthrow occurrence by non-occurrence.
The performance indices were accuracy, sensitivity, specificity, positive
predictive value, negative predictive value, Kappa, mean squared sensi-
tivity error, informedness (as Youden’s J statistics; Powers, 2011), the
Matthews correlation coefficient (MCC; Matthews, 1975) and AUC (area
under the curve) of the receiver operating characteristic (ROC; Swets,
1973). True positive represents a case where both the actual and pre-
dicted values are positive. False positive represents a case where the
actual value is negative, but the prediction is positive. False negative
represents a case where the actual value is positive but the prediction is
negative. True negative represents a case where both the actual and
predicted values are negative. These performance indices were then
compared to indices from previous studies.

The analyses were conducted with R version 3.4.1 (R Core Team,
2017).

Results
Modelling and validation of windthrow probability
Most of the model performance indices (accuracy = 0.88, sensi-
tivity = 0.84, specificity = 0.88, positive predictive value = 0.11,
negative predictive value = 0.997, Kappa = 0.17, informedness =
0.72, MCC = 0.28 and AUC = 0.93) were reasonably high com-
pared with that of previous studies (Table S1).

Prediction of windthrow probability

Figure 3 shows the importance of the predictor variables from
RF classifications used for predicting windthrow. Conspicuously
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significant variables related to windthrow were the study site
and stand height, followed by the maximum wind speed, tree
density and forest type. The influence of slope angle, broad-
leaved tree density and TOPEX were smaller than that of other
factors.

Figure 4 (a)–(f) shows the partial dependence plots for con-
tinuous predictor variables for RF predictions of the windthrow
occurrence in plantations and natural mixed forests. In most of
the domain, the windthrow probability of plantations was higher
than that of natural mixed forests at the same value of each
explanatory variable. In plantations, the windthrow probability
monotonically increased with increasing maximum wind speed
and tree density but monotonically decreased with increasing
TOPEX, slope angle and broad-leaved tree density. Stand height
showed a high probability of windthrow in the range from 8m
to 18m. The behaviours of partial plots in the plantations for
most variables except wind speed and broad-leaved tree density
were nearly consistent with that of the natural mixed forests.

Discussion
Abies plantations showed consistently higher windthrow ratios
than natural mixed forests under all conditions (Figure 4), which
confirms that Abies plantations are more vulnerable to cata-
strophic winds than natural mixed forests. However, the effects
of most factors on windthrow were not different between the
Abies plantations and natural mixed forests, indicating that
these factors influence the risk of wind damage similarly in both
types of forest (Figure 4).

The stand height and density of all trees, which are compo-
nents of the forest structure, were major influential factors for
wind damage along with maximum wind speed (Figure 3), sug-
gesting that the windthrow probability is highly dependent on

the behaviour of wind inside the forests. In general, the greatest
differences in forest structure between plantations and natural
forests are the age and size distribution of trees and the pres-
ence of previous gaps created in the canopy cover. After review-
ing 119 reports on wind damage, Everham and Brokaw (1996)
noted that even-aged stands generally had greater damage
than uneven-aged stands and uneven-aged stands were often
older, composed of species mixes and often of natural rather
than planted origin (Mitchell, 2013). The vulnerability of planta-
tions to catastrophic winds appeared to be due to their even-
aged size structure (Everham and Brokaw, 1996) Based on
empirical data from silvicultural experiments, Pukkala et al.
(2016) analysed the probability of wind damage to the inner
portions of stands that had experienced several storm events.
They suggested that stand structures with a range of tree sizes
can decrease the probability of windthrow because they
decrease wind speed in the inner parts of stands. Previous gaps
created by thinning also affect damage susceptibility. Gardiner’s
experiments (1997) on the effects of different thinning patterns
on the subsequent stability of trees showed that the risk of
destabilization increases significantly with gap size because the
loading on the exposed trees is increased with gap size.

Accordingly, plantations with even-sized structures and thin-
ning gaps enable strong winds to enter and pass through the
forests, which might easily cause swaying and overturning of
trees (Schütz et al., 2006). Our data on the behaviour of wind-
throw probability in relation to stand height and tree density
also support this finding. Abies plantations in the range from ca.
8m to 18m stand height or higher densities (>1200/ha), which
are at high risk of windthrow (Figure 4d–f), generally comprise a
single canopy and are at stand ages that experience occasional
thinning operations (Abe, 1989). The even-sized structure of
Abies plantations with thinning gaps might allow strong winds
to penetrate the forest without losing speed, therefore leading
to high windthrow probability.

The slope angle and TOPEX, which are topographic factors,
had limited effects on wind damage in our study (Figure 3),
although previous studies have shown how wind direction and
topography interact to determine fine-scale variability in the
location of damage (Foster and Boose, 1992; Mitchell, 2013).
When the valley line and wind direction are parallel, the wind
converges along the terrain and damage occurs along the valley
floor (Ruel et al., 1998). When the wind direction is perpendicu-
lar to the valley line, the windthrow occurs on the ridge since
valley floors are sheltered (Everham and Brokaw, 1996). A higher
probability of windthrow in locations with a gentle slope angle
and exposed topography (Figure 4b and c) mean that the for-
ests on the ridges were highly disturbed in our case. Therefore, if
plantations on ridges have the highest risk of windthrow, it may
be possible to reduce risk by selecting mountain hillsides for
planting.

A possible explanation for the study site being the most influ-
ential factor on windthrow is that the wind direction, soil type
and disturbance history are unique to each site. Another pos-
sible reason is the biased distribution of the natural mixed forest
study sites towards the west (Figure 1), which was inevitable
because natural forests that meet the study conditions are pri-
marily distributed in the western part of Hokkaido and are not
uniformly distributed. Additional efforts to mitigate the effect of
the biased distribution of study sites, such as targeting other

Figure 3 Variable importance plots for predictor variables from random
forest (RF) classifications for predicting windthrow. x Abbreviations:
Forest type, artificial plantation or natural forest. O Forest type: artificial
plantation or natural forest.
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typhoon events that took different paths or further developing
the analysis method, will be necessary for more universal mod-
elling in all regions.

Implications for management

The importance of stand structure in windthrow vulnerability
demonstrates the importance of appropriate forest manage-
ment even in mountainous areas. We might decrease the risk of
windthrow by refraining from generating large gaps, performing
thinning and increasing the structural complexity of plantations.
Technical developments making those management options
possible are needed. Given the situation in Japan, where forestry
labour is declining and plantation forests are difficult to manage
(Kawasaki, 2016), reconversion of plantations to a more natural
forest structure is an option for forest management. The planta-
tions in locations with high windthrow risk should be prioritized
in the future for natural forest restoration from the viewpoint of
efficient forest management because the risk of extreme
typhoons is expected to increase throughout this century
(Yoshida et al., 2017). Our model is based on the effects of only
one typhoon in a relatively small area, thus limiting its applic-
ability to other situations. The relationships between windthrow
occurrences and their explanatory variables are complex and
differ in response to numerous factors, including typhoon tracks,
wind direction against slopes and forest types. Therefore,

additional case studies should be performed to better under-
stand the trends in climate-change effects on windthrow risk in
Japan.

Supplementary data
Supplementary data are available at Forestry online.
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